

Bayerische Akademie der Wissenschaften

Technische Universität München

Measurements using squeezed microwaves

Continuous-variable propagating quantum microwaves

September 25, 2018

Frank Deppe

Walther-Meissner-Institut Technische Universität München Nanosystems Initiative Munich (NIM)

Walther-Meißner-Institut

Microwaves

Microwaves are omnipresent in everyday life!

Described well by classical electrodynamics \rightarrow "Classical"

Quantum effects (superposition, entanglement)? → Need platform for generation, manipulation & measurement!

Superconducting quantum circuits

Millikelvin temperatures 1GHz ⇔ 50 mK → Quantum computing, simulation, communication, illumination, sensing

Superconducting quantum circuits

Quantum |Science> + |Technology>

 \rightarrow Quantum illumination (quantum radar)

Quantum harmonic oscillator

LC Resonator \rightarrow Box for quantum microwaves

Nonlinear quantum circuits

Continuous variables

Discrete variables

Wave-particle duality

 \rightarrow Particle picture

→ Wave picture?
→ Continuous variables!

 $A\cos(\omega t + \varphi) = Q\cos(\omega t) + P\sin(\omega t)$

A, φ inconvenient \rightarrow Field quadratures Q, P

Phase space representations

Quantization $\rightarrow \hat{P}, \hat{Q}$ pair of conjugate variables analoguous to \hat{x}, \hat{p} $\left[\hat{P}, \hat{Q}\right] = i \iff (\Delta P)(\Delta Q) \ge \frac{1}{4}$

Phase space representation

$$\Rightarrow \text{ Quasiprobability distribution (,,Wigner function")} \\ W(Q,P) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left\langle Q - \frac{\zeta}{2} \left| \hat{\rho} \right| Q + \frac{\zeta}{2} \right\rangle e^{ip\zeta} d\zeta$$

- \rightarrow Equivalent to
 - \rightarrow Denisty matrix $\hat{\rho}$
 - \rightarrow Characteristic function (moments)
- $\rightarrow W(Q, P)$ can be negative (e.g., number or cat states)

Gaussian CV states

squeezing level $\mathcal{S} = -10 \log_{10} \left[(\Delta X_{
m sq})^2 / 0.25 \right]$

Number of photons $\langle \hat{a}^{\dagger} \hat{a} \rangle$ increases with increasing squeezing!

Theory

- → Propagating EM fields generally multi-mode
- \rightarrow Each mode characterized frequency + wavevector
- \rightarrow Quantized mode by mode
- \rightarrow Here: mostly single-mode approximation
- \rightarrow Microwaves: No polarization DOF in transmission lines

Experimental challenges

- ightarrow Protocols from optics don't consider low photon energy
 - \rightarrow Microwave components not tested for quantum signals
 - → Required: Squeezing, tomography, beam splitting, displacement, entanglement, feedforward
 - → Benchmark protocols: remote state preparation, teleportation
 - \rightarrow Microwave photodetection?

Envisioned applications of CV propagating quantum microwaves

Cryogenics made @ WMI

Experimental results measured in three homemade dilution refrigerators

Wet cryostat

- Since 2007
- 11 coax cables
- 4 HEMTs

Wet cryostat

- Since 2013
- 24 coax cables
 - 4-5 HEMTs

Dry cryostat

- since 2014
- 10+ coax cables

40 cm

• 4-6 HEMTs

Life as a PhD student in lowtemperature physics

Flux-driven Jospehson parametric amplifier

Squeezing & nondegenerate gain

р

- \rightarrow Greek: tomos = slice, section; grapho = to write
- \rightarrow Write a complete image by sectioning
- \rightarrow QST: Complete description of a quantum state
- → Denisty matrix, Wigner function, characteristic function...
- \rightarrow States of light: typically W(Q, P)

Quantum state tomography of propagating microwaves

Dual-path state tomography (classical)

Cross correlations $\langle C_1^n C_2^m \rangle$ \rightarrow Signal survives, noise cancels

→ Evident for 1st & 2nd signal moment $\langle C_{1,2}^2 \rangle$ contain $\langle V_{1,2}^2 \rangle > 0$ $\langle C_1 C_2 \rangle$ contains only $\langle V_1 V_2 \rangle = 0$

 \rightarrow Ancilla *v* vaccum or thermal state

→ Assume equal power gain G in both amplification chains (simpler formulas)

→ Higher moments by induction

$$\langle a^{n} \rangle = -\langle C_{1}^{n-1}C_{2} \rangle / G^{\frac{n}{2}}$$

$$-\sum_{\substack{k=1 \ j=0}}^{n-1} \sum_{j=0}^{k} \binom{n-1}{k} \binom{k}{j} \langle a^{n-k} \rangle \langle v^{j} \rangle \langle V_{1}^{n-k} \rangle$$

$$+\sum_{\substack{k=1 \ j=0}}^{n-1} \sum_{k}^{k} \binom{n-1}{k} \binom{k}{j} \langle a^{n-k-1} \rangle \langle v^{j+1} \rangle \langle V_{1}^{n-k} \rangle$$
(Right side → only terms of order < n - 1)

 \rightarrow Similar formulas for noise moments $\langle V_{1,2}^n \rangle$

Reference state tomography

1759

Dual-path state reconstructions

E. P. Menzel et al., Phys. Rev. Lett. 105, 250502 (2010).

Technical "detail": Calibration

Solution: "Planck spectroscopy" M. Mariantoni *et al.*, Phys. Rev. Lett. **105**, 133601 (2010).

- ightarrow PNCF essentially determined by gains & losses
- ightarrow Exact calibration requires well-known cold source
- → WMI uses a black body emitter (thermally weakly coupled heatable 50Ω load)

$$\Rightarrow P_{\text{exp}} = \mathbf{G} \times \mathbf{BW} \times \left[\hbar \omega \left(\langle \hat{a}^{\dagger} \hat{a} \rangle + \frac{1}{2} \right) + k_{\text{B}} T_{\text{noise}} \right]$$

→ Bose-Planck distribution $\langle \hat{a}^{\dagger} \hat{a} \rangle = \frac{1}{\exp(\frac{\hbar\omega}{k_{\rm p}T})}$

J. Goetz et al., Phys. Rev. Lett. **118**, 103602 (2017).

J. Goetz et al., Phys. Rev. Lett. 118, 103602 (2017).

Finite-time intensity correlations of squeezed microwaves

Photon statistics à la dual-path \rightarrow Finite-time photon-photon correlations

E. P. Menzel *et al.*, Phys. Rev. Lett. **105**, 100401 (2010).
L. Zhong *et al.*, New. J. Phys. **15**, 125013 (2013).
K. G. Fedorov, S. Pogorzalek *et al.*, Sci. Rep. **8**, 6416 (2018).

From moments up to 4th-order $g^{(2)}(\tau) = \frac{\langle \hat{a}^{\dagger}(0)\hat{a}^{\dagger}(\tau)\hat{a}(0)\hat{a}(\tau)\rangle}{\langle \hat{a}^{\dagger}\hat{a}\rangle^{2}}$

Finite-time intensity correlations of squeezed microwaves

→ Bunching as expected $(g^{(2)}(0) \rightarrow 3 \text{ for } S \rightarrow \infty)$

- → Coherent-state limit $g^{(2)}(\tau) \rightarrow 1$ reproduced for $\tau \rightarrow \infty$
- \rightarrow Shape mostly defined by measurement bandwidth (well understood)

Intensity correlations of single-mode squeezed states

$$g^{(2)}(\tau) = 1 + \operatorname{sinc}^{2}(\omega\tau) \frac{1 + 2\sigma_{x}(\sigma_{x} - 1) + 2\sigma_{p}(\sigma_{p} - 1)}{(1 - \sigma_{x} - \sigma_{p})^{2}}$$

measurement bandwidth

variances:

$$\sigma_p = \frac{1}{(2\chi + \kappa + \gamma)^2} [(2\chi - \kappa + \gamma)^2 (n_{b_{in}} + 1/2) + 4\kappa\gamma (n_{c_{in}} + 1/2)]$$

$$\sigma_x = \frac{1}{(2\chi - \kappa - \gamma)^2} [(2\chi + \kappa - \gamma)^2 (n_{b_{in}} + 1/2) + 4\kappa\gamma (n_{c_{in}} + 1/2)]$$

Displacement operation (theory)

u - power linear reflectivity

Displacement operator: $\widehat{D}(\alpha) = \exp(\alpha \widehat{a}^{\dagger} - \alpha^{*} \widehat{a})$ $\alpha = \text{Displacement vector in phase space}$

 \rightarrow Displacement is CV quantum gate & required in feedforward schemes

Displacement operation (Simulation)

How about actual quantum states?

Measuring displacement of propagating microwaves

K. G. Fedorov et al., PRL 117, 020502 (2016).

Displacement of squeezed microwaves

- → High degree of control over angle and magnitude
- → Hundreds of displacement photons referred to 400 kHz bandwidth
- → Squeezing and negativity nearly unchanged

K. G. Fedorov et al., PRL 117, 020502 (2017).

Entanglement

Bipartite entaglement

- \rightarrow Nonlcassical correlations between two subsystems
- ightarrow Defined via non-separability
 - \rightarrow Positive partial transpose (PPT) criterion
 - \rightarrow Separable state \rightarrow PPT has positive eigenvalues
 - → Negative eigenvalues → Non-separable → Entanglement
- \rightarrow Witness functions indicate presence (not absence!)
- ightarrow In some situations quantitative measures exist

Bipartite entanglement in Gaussian states

- → Quantum correlations between quadratures of subsystems (<u>"two-mode squeezing</u>")
 → Measures: Negativity, log negativity, entanglement of formation...
- → Negativity $\mathcal{N} = \max\{\widetilde{\mathcal{N}}; 0\} > 0 \rightarrow \text{Entanglement}$

$$\tilde{\mathcal{N}} = \frac{1-\nu}{2\nu} \qquad \nu \equiv \sqrt{\left(\Delta(\boldsymbol{\sigma}) - \sqrt{\Delta^2(\boldsymbol{\sigma}) - 4\det\boldsymbol{\sigma}}\right)/2} \qquad \Delta(\boldsymbol{\sigma}) \equiv \det\boldsymbol{\alpha} + \det\boldsymbol{\beta} - 2\det\boldsymbol{\gamma}$$

→ Computed from covariance matrix σ based on 1st & 2nd order moments → Experimentally, negativity kernel $\widetilde{\mathcal{N}}$ plotted (difficult to measure 0)

CV path entanglement

Analyze two-mode output of beam splitter with reference state tomography

Tomography of two-mode squeezing

Vacuum input leads to residual single-mode squeezing ightarrow No EPR state

- ightarrow Two-mode squeezing should depend on the relative angle
- → Pure/balanced two-mode squeezing expected for 90°
- \rightarrow Correlation measurement allows for tomography of two-mode state

K. G. Fedorov, S. Pogorzalek et al., Sci. Rep. 8, 6416 (2018).

Tomography of two-mode squeezing

Balanced two-mode squeezing

No information in single paths All information in entanglement

→ Ressource for CV quantum communication

Finite-time entanglement correlations of squeezed microwaves

Photon statistics à la dual-path \rightarrow Finite-time photon-photon correlations

From moments up to 4th-order

→ Negativity kernel $N_{\rm k}(\tau)$

Finite-time entanglement correlations

3. 2.

1.

0.

n

0.29

0.20

0.12

0.05

0.03

1000

- \rightarrow Strongly dependent on squeezing level
- \rightarrow Sufficient for first RSP & QT experiments without delay line

K. G. Fedorov, S. Pogorzalek et al., Sci. Rep. 8, 6416 (2018).

40

→ Remote state preparation is the variant of quantum state teleportation in which the sender knows the quantum state to be communicated

 \rightarrow First "real" communication protocol implemeted with CV propagating microwaves

C. H. Bennett *et al.*, Phys. Rev. Lett. **87**, 077902 (2001).

R. Di Candia *et al.*, EPJ Quantum Technology **2**, 25 (2015).

S. Pogorzalez, K. G. Fedorov et al., in preparation.

Remote state preparation Experimental setup

JPA sample

Remote state preparation Squeezing & Fidelity

R. Di Candia *et al.*, EPJ Quantum Technology **2**, 25 (2015).S. Pogorzalez, K. G. Fedorov *et al.*, in preparation.